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Abstract

* The optical refractive index and electrical resistivity p of Silver Zinc alloy were studied
experimentally by a co-sputtering method.

* Currently, the theories on alloys refractive index are too complex, dependent on too
many factors, so it can still only be a semi-practical prediction.

* |n this study, a new theoretical method was developed to simplify the calculation of
silver alloy IR refractive index, and also valid experimental condition was found.

* (1) Theoretically, the refractive index ratio na”oy/nAg between silver and its alloy at IR region is

derived, a way to cancel out most factors so that it only depends on free electron density n, and the
film resistivity p

* (2) Experimentally, this assumption was approximately met at a special conditions
* (3) The experimental results agreed well with this simplified calculation.

* Further how the zinc electrons contribute to the optical and electrical properties in low
Zn concentration AgZn alloy (<10%) was experimental presented and discussed in this
study.



Introduction

- We are initially curious

o Why are there no accurate theory calculations for
metal thin film refractive index?

. Can we derive such an accurate theoretical calculation?

- Can we prove the theory by experiments?



Why refractive index calculationis hardto meetthinfilmvalue

* The thin film refractive index is dependent
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Theory on metal properties calculation

Free electron model Assumption: (iuncionof | - | Dielectric Constance g, is

X, E(electric field), o (frequency), T(collision time)) function of o, T, ®, frequency,
'E> collision time, plasma frequency, which is

Dielectric Constance &, definition function of electron density Ne)

(function of X, E )

d’x m_dx

* In math: —eE(t) =m,— + —=—
o dt*? = T dt oF
* The Solution is =
mg(m2+i?j
More * The electric displacement field: D = gyE + P = £,5/,E
In detail * And polarization P = -e-n.x
e Substitute Egs.(2),(4) into Eq. (3) =
dielectric constant g, = 1 — —22¢_ — 1 _ @pe ™ __@peT
&r = RERT AN 1+w?T? wt(1+w?1?)
T p
Where w,, is plasma frequency, 2, = :ﬂe;e 2
 And Ohm’s & Newton’s laws =» Collison time %: ”';lﬂ

(1)
(

(
(4

2)
3)
)

J2Z

E> optical and electric properties

Drude-Lorentz Model assumptions: (widely used, especially for group | and XI elements)

e: is electron charge

m, is electron mass

r: is the collision time

w: is frequency

wpe: 1S plasma frequency

n, is electron density

E: electric field

D: electric displacement field

P: polarization

gy is dielectric Constance in vacuum
g, : Is relative dielectric Constance
g,: is real part of dielectric Constance
€,: is imaginary part of g,

p: is resistivity




Refractive Index calculation was simplified from literatures

* Refractive index mathematically
n+ik=\/€_r=\/€1+i€2
Calculation Eq(5) can be simplified by

e Assumption 2: || > |&,];

— Valid for group 1 and 11

e Assumption 3: w?1? > 1;

— Valid for wavelength < 3um

2 2
€ =1— =5 4=k
=>»index n is function of
—Electron density n,
—Resistivity p, _ née’
n= 2 * p EEME

—Frequency o oMMe

(15)

(16)
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1 1s common refractive index

k 1s extinction coefficient
e: I1s electron charge
M. IS electron mass

11.: Is electron density

£p- 15 dielectric Constance in vacuum

15 resistivity




Develop a method for index calculation with two factors

* Further simplification by an assumption 4: w5, > w? £, = —2be 4 jDbe 1o
o =T
— valid for wavelength > 0.6 um T (1g)
: - : : 0, _gm,
— & can be simplified as Eq. 17, then substitute Eq. 18 into Eq. 16 k=yledl = [T =
* Ratio 2 | out most factors in index calculati er indexn, . — "0 |
atio =»cancel out most fac c;rs in index calculation siiver index gy = 7= kg (1)
3/2
. Nail Ne _alloy * Palloy | nE 4110y €3
Index ratio —=> =——* (21) alloy index Maiioy = 3= 2525 * Paiioy (20)

3/2

ag Ne_ag * PAg

only dependent on two factors N, and D, (free electron density and resistivity),

with all other factors being cancelled out: (Assumption 5)

Nyg - is silver index

Mai10y: Is alloy index

Pag - s silver resistivity
Paioy: 1S alloy resistivity
ne_ag: 1S silver electron density

ne_aoy+ 1S alloy electron density

e Can experiments be valid for these two factors? Yes, under special conditions

— The Ag and AgZn alloy with low Zn concentration (<10%): The alloy co-sputter deposition conditions nearly
identical to Ag’s condition, except the alloy having an additional tiny Zinc co-sputtering power.



Derive thin film alloy refractive index calculation

* The alloy index can be calculated by n_ and p (eq. 21) electron density calculation
* Electron densities n_ of alloys have 2 possibilities Alloy electron density M, qgy = (1= Zn%)n, 4
— Zn atoms contributes O free electrons;
. 3/2 . Palloy 4
Alloy Index|ng 10y = (1 — Zn%)3/2% =X * n, . (23) -
PAg Alloy electron density :

Ny allay = (1- zn%Jne_ﬂ.g +2%Zn% + Ny zn
7.132 107.87

= 1=/t a 0 —_
(1-Zn%) n, 40 + 2 * Zn% (;c.q»q 15 ng_Ag)

— Each Zn atom contributes 2 free electrons;

Pall :
Alloy Index|n = (1 + 1.24Zn%)3/?+ ==22 * 0, .| (25) n, z,, is transferred to n, 4, by
alloy Ag § | gy .
PAg the molecular weight and density conversion

Where Zn% is the volume percentage of Zn in the alloy
Silver molecular weight: 107.87 u

* Experiments can tell which is the correct one Zic molecular wewht: 55,35 u
ilver density: 10.49 g/cm

Zinc density: 7.13 g/cm?

 The alloy index can be accurately predicted if Ag index,
Ag-Alloy resistivity and concentration are known




Experiment Setup

* PVD

* Background vacuum: 2x10"" torr

* Ag and Zn target materials are 99.99%
e Co-sputter to generate Ag Zn alloy , |
* Pulsed DC (40kHz) power supply j " : .' Mechanical

e UV-VIS-IR Spectrometer (Shimadzu 3700) —

* 300-2500 nm spectra
* Double beams, 3 sensors
* Error baris 0.2%

» Spectroscopic Ellipsometer (Woollam VASE)
* 300-1700 nm
* 3 measurement parameter (Delta, Psi, transmission)
* Thickness accuracy 0.1 nm

* Four Point Probe
e Accuracy 0. 04 ohm




Zn contributes free electrons in alloy AgZn properties or not?

Model vs experiment results comparison

If each Zn atom contributes 2 free electrons | ,

I aIon properties 1.2 A A ¢ Experiment
k‘ A = ”alioy/.@ai.{oy
(1 + 1.24Zn%)3/? x (25)

“u”ny/ﬂuimy . Nag PAg

n P 1.0

= A 09 l l 3 l l Model Eq((23)
. : f l l (1 — ZROA)) 3/2
* |f each Zn atom contributes 0 free electrons 0.8 l |
in alloy properties 0.7 A Model Eq((25)
0.6 (1 + 1.24Zn%)3/2

l’lﬂ:“[l_}' fpﬂ”[,l}" - (1 _ Zn{}’/u):lfz (23) 3% 5% 7% 9% 11%
Nag PAg Zn% concentration

In conclusion, Zn contributes no free electrons

Error bar discussion. <*=12%
e Calculated from the sum of all standard deviations of measurements of p ratios <5%
* plus the deposition n,, and n ratio variation of <7%,

alloy
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Runsheet Summary

alloy waveleng wavelength
Zinc pressure | Arflow |_. thickness | Dep Rate | average _ Resistivity| Zn% in | electron | collision | thA for RRiE A (nm) for
run # Ag power Time Sec SteEV 1sigma ) i frequency
power (mT) (sccm) (nm) (nm/s) | Rs (ohm) (ohm*m) | volume | density |timet(s) |(wt)*2>>1 (H2) (pe/®)r2
(/m3) (nm) >>1
D71-3 100w 2.5 360 70 26.4 0.38 1.4 2.5% 1.9% | 3.6E-08 0 5.80E+28| 1.71E-14 | 1.02E+04 | 1.36E+16| 4.38E+02
D71-7 bw 100W 2.5 360 70 29.1 0.42 3.8 4.5% 1.2% | 1.1E-07 | 9.3% |[5.26E+28| 6.09E-15 3.63E+03|1.29E+16| 4.60E+02
D72-1 150w 2.5 360 60 34.1 0.57 1.0 2.2% 2.2% | 3.4E-08 0 5.80E+28| 1.80E-14 | 1.07E+04 | 1.36E+16| 4.38E+02
D72-3 bw 150w 2.5 360 60 36.6 0.61 2.7 2.8% 1.0% | 9.9E-08 | 6.8% |[5.40E+28| 6.65E-15 [3.96E+03|1.31E+16| 4.54E+02
D72-5 200W 2.5 360 45 34.7 0.77 1.1 1.9% 1.8% | 3.7E-08 0 5.80E+28 | 1.66E-14 |9.91E+03 | 1.36E+16| 4.38E+02
D72-7 6w 200W 2.5 360 45 36.4 0.81 2.2 2.0% 0.9% | 7.9t-08 | 4.7% |5.53E+28|8.10E-15|4.82E+03(1.33E+16| 4.49E+02
D73-1 100W 2.5 360 90 34.6 0.38 1.0 3.0% 3.0% | 3.5E-08 0 5.80E+28| 1.77E-14 | 1.05E+04 | 1.36E+16| 4.38E+02
D73-5 bw 100W 2.5 360 90 37.9 0.42 2.9 2.7% 0.9% | 1.1E-07 | 8.7% |5.29E+28|6.19E-15|3.69E+03 [1.30E+16| 4.59E+02
D73-7 bw 100W 2.5 360 90 38.4 0.43 2.8 4.4% 1.5% | 1.1E-07 | 9.9% |[5.23E+28| 6.26E-15 (3.73E+03[1.29E+16| 4.62E+02

« 3 different Zn% of AgZn alloy were studied by co-sputter method,
* To meet our assumptions, we need the wavelength to be at least

greater than 600nm and smaller than 3000nm:

e Assumption 3: w?7? > 1; Valid for wavelength < 3um

* Assumption 4: w3, > w* : valid for wavelength > 0.6 um
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Alloy index model calculation vs experiment measurements

Alloy Index : ngy0, =

AgZn (Zn 4.7%)

= o o = N
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The model calculations and the experiment results match up well
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Repeatability study:

* |ndexes ratio variation from three model calculation showed ~7%
standard deviation in average of the spectra.

— Two Silver depositions of 100W with <4% index variation

— Three Alloy depositions of 100W Ag + 6 W Zn with <3% index variation

1.2 1.2 1.2
c 1 c 1 4 c 1
) P x
2 08 —Alloy D71-7 £ 0.8 —Alloy D73-5 2 08 —Alloy D73-7
206 n Y06 n 206 n
2 2 S
S04 calculated 504 504 calculated
o= = calculated “
« 0.2 2o0.2 2o.2

0 0 0
600 1000 1400 1800 600 1000 1400 1800 600 1000 1400 1800
Wavelength (nm) Wavelength nm) Wavelength (nm)

Repeated Silver alloy index of 100wAg + 6W Zn and the calculation from the theory eq. (26) .



Conclusions

We theoretically derived a refractive index calculation that depends only on two

parameters which canceled out other factors.
3/2

Nalloy _ e -alloy * Palloy
— 3/2

— Valid experimental conditions were confirmed between 0.6 um and 3 um

Alloy index with concentration relationship was derived:

. 3/2  Palloy
Nalioy = (1 - ZTL%) /2 PAg *Nyg

— Theory and experiments agree within error bar
— Experimentally confirmed that Zn contributes no free electrons in alloy AgZn film properties in
this study.
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Future study on why Zn does not contribute free electron in AgZn alloy?

* This study indicated that Zn does not contribute free electron in AgZn alloy.

* Literature report AgGe with alloy concentration 26%-37%, the 2" element Ge
contribute free electrons

* However, there are literature of AgFe with 1%, AlCu(0.5%-1.5%) ....alloy free
electrons are lower than the pure silver concentration, which means the 2"
element is likely not contribute free electron.

e Our hypothesis is: at very low concentration of alloy element in a highly
conducting metal silver, the electrons from the 2" element is localized and is
not able to contribute any free electrons to the conducting current.

* Any suggestion?
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